Mathematical and computational modeling of tomato growth for 3D printing

Autores

DOI:

https://doi.org/10.7769/gesec.v15i6.3860

Palavras-chave:

Tomato, Mathematical and Computational Modeling, Growth, Logistic Model

Resumo

The physical appearance of food has a significant impact on its consumption and economic value. Research indicates consumer dissatisfaction with the quality of the tomatoes found in commerce. Physical appearance is the main characteristic that causes dissatisfaction among consumers looking for unblemished fruits. In view of this, this work aims to create a parametric model for the 3D printing of tomato fruit development that helps the producer identify the development phases of their production and compare the morphological characteristics of the fruits. For this purpose, daily experimental data on fruit growth were extracted, in addition to photographic records. In this study, a model was developed that describes the growth of fruits of the hybrid saladette tomato SM-16. This model simulates the daily growth behavior of these fruits. The mathematical and computational modeling was developed using the Python programming language and two other free software, Octave and Inkscape. The growth of the tomato is represented by a logistic model, while the shape of the fruits during growth is a model developed in Artificial Neural Network. The models used, adjusted to the parameters found, proved to be adequate to describe the growth behavior of the tomato fruits of the variety studied over time.

Downloads

Não há dados estatísticos.

Referências

Andreuccetti, C. et al. (2003) Perfil dos consumidores de tomate de mesa em um hipermercado de campinas-sp. In: XXXII Congresso Brasileiro de Engenharia Agrícola. [S.l.: s.n.].

Brasil. (2018), Ministério da agricultura, pecuária e abastecimento. instrução normativa nº 33, de 18 de julho de 2018(*). propõe o regulamento técnico de identidade e qualidade para classificação do tomate. Diário Oficial Da União.

Ferreira, S. M. R.; Freitas, R. J. S. d.; Lazzari, E. N. (2004), Padrão de identidade e qualidade do tomate (lycopersicon esculentum mill.) de mesa. Ciência Rural, SciELO Brasil, v. 34, n. 1, p. 329–335. DOI: https://doi.org/10.1590/S0103-84782004000100054

Foolad, M. R. (2007), Genome mapping and molecular breeding of tomato. International Journal of Plant Genomics, Hindawi, v. 2007. DOI: https://doi.org/10.1155/2007/64358

Gouveia, B. T. (2016), Avaliação agronômica e resistencavaia a pragas de híbridos de tomatencom elevados teores foliares de acilaçúcares. Dissertação (mestrado acadêmico) Lavras: UFLA, p. 94.

IBGE. (2023), Instituto Brasileiro de Geografia e Estatistica. Disponível em: https://sidra.ibge.gov.br.

Monteiro, C. S. et al. (2008), Qualidade nutricional e antioxidante do tomate “tipo italiano”. Alimentos e Nutrição Araraquara, v. 19, n. 1, p. 25–31.

Pastijn, H. (2006), Chaotic growth with the logistic model of p.-f. verhulst. In: The Logistic Map and the Route to Chaos. [S.l.]: Springer, p. 3–11. DOI: https://doi.org/10.1007/3-540-32023-7_1

Pinheiro, J.; Bates, D. (2000), Mixed-effects models in s and s-plus, josé c. pinheiro and douglas m. bates. Statistics and Computing Series. Springer-Verlag, New York, NY, p. 2000. DOI: https://doi.org/10.1007/978-1-4419-0318-1

Downloads

Publicado

2024-06-07

Como Citar

Streda, M. A., Binelo, M. O., Silva, J. A. G. da, & Binelo, M. de F. B. (2024). Mathematical and computational modeling of tomato growth for 3D printing. Revista De Gestão E Secretariado, 15(6), e3860 . https://doi.org/10.7769/gesec.v15i6.3860