Improving the educational experience on Youtube: a machine learning approach to classifying and recommending educational videos

Autores

DOI:

https://doi.org/10.7769/gesec.v15i4.3587

Palavras-chave:

Classification, Education, Learning Objects, Neural Networks, Machine Learning, Youtube

Resumo

The fast development of technology has revolutionized social interaction and enabled easy access to a vast amount of information. However, it is increasingly challenging to find relevant educational materials within the large volume of available data. This challenge has led to a significant waste of time for teachers and students in searching for high-quality educational resources. In this sense, the present work focuses on classifying educational videos on YouTube using Machine Learning models. The study extends a previous work that analyzed YouTube videos and proposed a methodology for classifying them using their comments. The current study expands the dataset used in the previous work and employs Machine Learning algorithms such as Random Forest and Neural Networks, along with hyperparameter tuning techniques like Grid Search. Experimental results showed that a Convolutional Neural Network was able to differentiate educational videos from non-educational ones with an accuracy rate of 95,71%. This study highlights the potential of Convolutional Neural Networks in classifying educational content on YouTube, contributing to advances in the field of Machine Learning for educational purposes.

Downloads

Não há dados estatísticos.

Referências

Abu-El-Haija, S., Kothari, N., Lee, J., Natsev, P., Toderici, G., Varadarajan, B., & Vijayanarasimhan, S. (2016). YouTube-8M: A large-scale video classification benchmark. arXiv preprint arXiv:1609.08675.

Afonso, A. R., & Duque, C. G. (2019). Análise de sentimentos em comentários de vídeos do YouTube utilizando aprendizagem de máquinas supervisionada. Ciência da Informação, 48(3).

Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S., Trippe, E. D., Gutierrez, J. B., & Kochut, K. (2017). A brief survey of text mining: Classification, clustering and extraction techniques. arXiv preprint arXiv:1707.02919. https://doi.org/10.48550/arXiv.1707.02919

Amanda, R., & Negara, E. S. (2020). Analysis and implementation machine learning for YouTube data classification by comparing the performance of classification algorithms. Jurnal Online Informatika, 5(1), 61–72.

Berrar, D. (2019). Cross-validation. In S. Ranganathan, M. Gribskov, K. Nakai, & C. Schönbach (Eds.), Encyclopedia of Bioinformatics and Computational Biology (pp. 542–545). Academic Press. https://doi.org/10.1016/B978-0-12-809633-8.20349-X DOI: https://doi.org/10.1016/B978-0-12-809633-8.20349-X

Braga, J., & Menezes, L. (2014). Objetos de aprendizagem, volume 1: introdução e fundamentos (Vol. 1). UFABC. Retrieved from https://pesquisa.ufabc.edu.br/intera/wp-content/uploads/2015/12/objetos-de-aprendizagem-v1.pdf

Breiman, L. (2001). Random Forests. Machine Learning, 45(1). https://doi.org/10.1023/A:1010933404324 DOI: https://doi.org/10.1023/A:1010933404324

Carvalho, H. F. B., Pitangui, C. G., Trindade, E. C., de Assis, L. P., & Andrade, A. V. (2020). Learning Objects and Youtube: an analysis of videos and their categories. In 2020 XV Conferencia Latinoamericana de Tecnologias de Aprendizaje (LACLO) (pp. 1-6). IEEE. https://doi.org/10.1109/LACLO50806.2020.9381145 DOI: https://doi.org/10.1109/LACLO50806.2020.9381145

Carvalho, H. C. F. B., Pitangui, C. G., Trindade, E. A. C, Assis, L. P. de, Andrade, A. V. & D. P. B. de. (2021). Categorização de vídeos educacionais do Youtube por meio de comentários. Revista Novas Tecnologias Na Educação, 18(2), 621–629. https://doi.org/10.22456/1679-1916.110305 DOI: https://doi.org/10.22456/1679-1916.110305

Carvalho, H. C. F. B., Dorça, F. A., Pitangui, C. G., Assis, L. P. de, Andrade, A. V., & Trindade, E. A. C. (2022). Classificação automática de vídeos educacionais por meio de comentários apoiada por técnicas de Aprendizado de Máquina: uma análise experimental utilizando o Youtube. Revista Brasileira De Informática Na Educação, 30, 419–448. https://doi.org/10.5753/rbie.2022.2455 DOI: https://doi.org/10.5753/rbie.2022.2455

do Nascimento, P., Barreto, R., Primo, T., Gusmão, T., & Oliveira, E. (2017). Recomendação de objetos de aprendizagem baseada em modelos de estilos de aprendizagem: Uma revisão sistemática da literatura. 28(1), 213. https://doi.org/10.5753/cbie.sbie.2017.213 DOI: https://doi.org/10.5753/cbie.sbie.2017.213

Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. O'Reilly Media, Inc.

Hickman, L., Thapa, S., Tay, L., Cao, M., & Srinivasan, P. (2022). Text preprocessing for text mining in organizational research: Review and recommendations. Organizational Research Methods, 25(1), 114–146. https://doi.org/10.1177/1094428120971683 DOI: https://doi.org/10.1177/1094428120971683

Júnior, C. B., & Dorça, F. (2018). Uma abordagem para a criação e recomendação de objetos de aprendizagem usando um algoritmo genético, tecnologias da web semântica e uma ontologia. In Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação-SBIE) (pp. 1533–1542). https://doi.org/10.5753/cbie.sbie.2018.1533 DOI: https://doi.org/10.5753/cbie.sbie.2018.1533

Jusoh, S., & Alfawareh, H. M. (2012). Techniques, applications and challenging issue in text mining. International Journal of Computer Science Issues (IJCSI), 9(6), 431.

Kesavaraj, G., & Sukumaran, S. (2013). A study on classification techniques in data mining. In 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT) (pp. 1–7). IEEE. https://doi.org/10.1109/ICCCNT.2013.6726842 DOI: https://doi.org/10.1109/ICCCNT.2013.6726842

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. DOI: https://doi.org/10.1038/nature14539

Menolli, A., Malucelli, A., & Reinehr, S. (2011). Criação semi-automática de objetos de aprendizagem a partir de conteúdos da wiki. In Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação-SBIE).

Miranda, R. M. d. (2004). GROA: um gerenciador de repositórios de objetos de aprendizagem. Master’s thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BR.

Mitchell, T. M. (1997). Machine learning. McGraw-Hill New York.

Pinheiro, R. R. A., et al. (2018). Sistema de recomendação de vídeos educacionais: um estudo de caso no YouTube. Master’s thesis, Universidade Federal de Alagoas, Maceió, AL, BR.

Russell, S., & Norvig, P. (2010). Artificial intelligence: a modern approach. Pearson Education.

Sukanya, M., & Biruntha, S. (2012). Techniques on text mining. In 2012 IEEE International Conference on Advanced Communication Control and Computing Technologies (ICACCCT) (pp. 269–271). IEEE. https://doi.org/10.1109/ICACCCT.2012.6320784 DOI: https://doi.org/10.1109/ICACCCT.2012.6320784

Thelwall, M. (2018). Social media analytics for YouTube comments: Potential and limitations. International Journal of Social Research Methodology, 21(3), 303–316. https://doi.org/10.1080/13645579.2017.1381821 DOI: https://doi.org/10.1080/13645579.2017.1381821

Vieira, F. J. R., & Nunes, M. A. S. N. (2012). DICA: Sistema de recomendação de objetos de aprendizagem baseado em conteúdo. Scientia Plena, 8(5).

Vijayarani, S., Janani, R., et al. (2016). Text mining: open source tokenization tools-an analysis. Advanced Computational Intelligence: An International Journal (ACII), 3(1), 37–47. DOI: https://doi.org/10.5121/acii.2016.3104

Wiley, D. A. (2000). Learning object design and sequencing theory. Ph.D. thesis, Brigham Young University.

YouTube. (2019). YouTube insights. Retrieved from https://youtubeinsights.withgoogle.com on April 17, 2019.

Downloads

Publicado

2024-04-01

Como Citar

Carvalho, H. C. F. B., Dorça, F. A., Pitangui, C. G., Andrade, A. V., Assis, L. P. de, & Trindade, E. A. C. (2024). Improving the educational experience on Youtube: a machine learning approach to classifying and recommending educational videos. Revista De Gestão E Secretariado, 15(4), e3587. https://doi.org/10.7769/gesec.v15i4.3587