Effect of pollution on physical and chemical water data: a multivariate statistical analysis

Autores

DOI:

https://doi.org/10.7769/gesec.v14i5.2125

Palavras-chave:

Statistical Software, Multivariate Statistics, Dendogram, PCA

Resumo

This study aimed to show the importance and functionality of the tools of multivariate statistics in the environmental area, and more specifically on 13 water collection points of the Subaé River in the municipality of Feira de Santana, Bahia, an important Industrial Pole in the region, carried out with 3 samplings. To achieve this objective, applied research of exploratory nature and quantitative approach was carried out. As method and technical procedures were adopted, respectively, the bibliographic review, and a case study. As a contribution of this research, it is pointed out the holistic view of opportunities to carry out new research on the subject in question with the tools presented.

Downloads

Não há dados estatísticos.

Referências

Alboukaey, N., Joukhadar, A., & Ghneim, N. (2020). Dynamic behavior based churn prediction in mobile telecom. Expert Systems with Applications, 162, 113779. https://doi.org/10.1016/j.eswa.2020.113779 DOI: https://doi.org/10.1016/j.eswa.2020.113779

Broniatowski, M., & Caron, V. (2014). Conditional Inference in Parametric Models. In Statistical Models and Methods for Reliability and Survival Analysis (Vol. 9781848216, pp. 125–143). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118826805.ch9 DOI: https://doi.org/10.1002/9781118826805.ch9

Cardoso, R. P., Reis, J. S. D. M., Silva, D. E. W., Almeida, M. da gloria diniz de, Barros, J. G. M. de, & Sampaio, N. A. de S. (2023). Scientific Research Trends About Metaheuristics in Process Optimization and Case Study Using the Desirability Function. Revista de Gestão e Secretariado, 14(3), 3348–3367. DOI: https://doi.org/10.7769/gesec.v14i3.1809

Chakraborty, S., Agarwal, S., & Dandge, S. S. (2018). Analysis of Cotton Fibre Properties: A Data Mining Approach. Journal of The Institution of Engineers (India): Series E, 99(2), 163–176. https://doi.org/10.1007/s40034-018-0125-4 DOI: https://doi.org/10.1007/s40034-018-0125-4

Coelho de Oliveira, H., Elias da Cunha Filho, J. C., Rocha, J. C., & Fernández Núñez, E. G. (2017). Rapid monitoring of beer-quality attributes based on UV-Vis spectral data. International Journal of Food Properties, 20(July), 1–14. https://doi.org/10.1080/10942912.2017.1352602 DOI: https://doi.org/10.1080/10942912.2017.1352602

Derksen, C., LeDrew, E., Walker, A., & Goodison, B. (2000). Winter season variability in North American Prairie SWE distribution and atmospheric circulation. Hydrological Processes, 14(18), 3273–3290. https://doi.org/10.1002/1099-1085(20001230)14:18<3273::AID-HYP203>3.0.CO;2-W DOI: https://doi.org/10.1002/1099-1085(20001230)14:18<3273::AID-HYP203>3.0.CO;2-W

Espuny, M., Costa, A. C. F., Reis, J. S. da M., Barbosa, L. C. F. M., Carvalho, R., Santos, G., & Oliveira, O. J. de. (2022). Identification of the Elements and Systematisation of the Pillars of Solid Waste Management. Quality Innovation Prosperity, 26(2), 147–169. https://doi.org/10.12776/qip.v26i2.1717 DOI: https://doi.org/10.12776/qip.v26i2.1717

Espuny, M., Faria Neto, A., da Motta Reis, J. S., dos Santos Neto, S. T., Nunhes, T. V., & de Oliveira, O. J. (2021). Building New Paths for Responsible Solid Waste Management. Environmental Monitoring and Assessment, 193(7), 442. https://doi.org/10.1007/s10661-021-09173-0 DOI: https://doi.org/10.1007/s10661-021-09173-0

Febriani, R. A., Park, H.-S., & Lee, C.-M. (2020). A Rule-Based System for Quality Control in Brake Disc Production Lines. Applied Sciences, 10(18), 6565. https://doi.org/10.3390/app10186565 DOI: https://doi.org/10.3390/app10186565

Fetz, K., Wenzel-Meyburg, U., & Schulz-Quach, C. (2017). Validation of the German revised version of the program in palliative care education and practice questionnaire (PCEP-GR). BMC Palliative Care, 16(1), 78. https://doi.org/10.1186/s12904-017-0263-3 DOI: https://doi.org/10.1186/s12904-017-0263-3

Garcia-Romero, A., Alberdi, X., Tezanos, J., & Anglada, M. (1995). Statistical analysis of the tensile strength of an Al2O3 short-fibre-reinforced aluminium composite. Journal of Materials Science, 30(10), 2605–2609. https://doi.org/10.1007/BF00362141 DOI: https://doi.org/10.1007/BF00362141

Godinho, M. D. S., Pereira, R. O., Ribeiro, K. D. O., Schimidt, F., Oliveira, A. E. de, & Oliveira, S. B. de. (2008). Classificação de refrigerantes através de análise de imagens e análise de componentes principais (PCA). Química Nova, 31(6), 1485–1489. https://doi.org/10.1590/S0100-40422008000600039 DOI: https://doi.org/10.1590/S0100-40422008000600039

Gomes, F. da S., Camargo, P. R., Reis, J. S. da M., Diogo, G. M. M., Cardoso, R. P., Barros, J. G. M. de, Sampaio, N. A. de S., Barbosa, L. C. F. M., & Santos, G. (2022). The Main Benefits of Application of Six Sigma for Productive Excellence. Quality Innovation Prosperity, 26(3), 151–167. https://doi.org/10.12776/qip.v26i3.1712 DOI: https://doi.org/10.12776/qip.v26i3.1712

Hair Junior, J. S., Black, W. C., Babin, B. J., Anderson, R. E., & Tathan, R. L. (2009). Análise Multivariada de Dados. In Grupo A (6a ed.). Grupo A.

Kothari, C. R., & Garg, G. (2019). Research methodology methods and techniques. In New Age International (4o). New Age International.

Lara, M. L. G. de, & Conti, V. L. (2003). Disseminação da informação e usuários. São Paulo Em Perspectiva, 17(3–4), 26–34. https://doi.org/10.1590/s0102-88392003000300004 DOI: https://doi.org/10.1590/S0102-88392003000300004

Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R Package for Multivariate Analysis. Journal of Statistical Software, 25(1). https://doi.org/10.18637/jss.v025.i01 DOI: https://doi.org/10.18637/jss.v025.i01

Leoni, R. C., Sampaio, N. A. de S., & Corrêa, S. M. (2017). Estatística Multivariada Aplicada ao Estudo da Qualidade do Ar. Revista Brasileira de Meteorologia, 32(2), 235–241. https://doi.org/10.1590/0102-77863220005 DOI: https://doi.org/10.1590/0102-77863220005

Lin, W., Chai, Q., Chen, X., & Li, Y. (2017). Effective identification of clinical bacterial pathogens by fourier transform near-infrared spectroscopy. 2017 Chinese Automation Congress (CAC), 2017-Janua(2016), 4587–4592. https://doi.org/10.1109/CAC.2017.8243589 DOI: https://doi.org/10.1109/CAC.2017.8243589

Matsuoka, T., Kobayashi, K., Lefor, A. K., Sasaki, J., & Shinozaki, H. (2019). Antithrombotic drugs do not increase intraoperative blood loss in emergency gastrointestinal surgery: a single-institution propensity score analysis. World Journal of Emergency Surgery, 14(1), 63. https://doi.org/10.1186/s13017-019-0284-8 DOI: https://doi.org/10.1186/s13017-019-0284-8

Mazza, F. C., de Souza Sampaio, N. A., & von Mühlen, C. (2022). Hyperspeed method for analyzing organochloride pesticides in sediments using two-dimensional gas chromatography–time-of-flight mass spectrometry. Analytical and Bioanalytical Chemistry, 0123456789. https://doi.org/10.1007/s00216-022-04464-y DOI: https://doi.org/10.1007/s00216-022-04464-y

McCain, S.-L. C., Hu, C., & Woods, R. H. (2005). Examining Job-Related Factors Perceived by Salespersons in the U.S. Timeshare Industry. Journal of Travel & Tourism Marketing, 19(1), 29–38. https://doi.org/10.1300/J073v19n01_03 DOI: https://doi.org/10.1300/J073v19n01_03

Mo, Y., Xu, H., & Ding, X. (2017). Improved OR-PCA for robust foreground detection. 2017 Chinese Automation Congress (CAC), 2017-Janua, 5566–5571. https://doi.org/10.1109/CAC.2017.8243774 DOI: https://doi.org/10.1109/CAC.2017.8243774

Moita Neto, J. M., & Moita, G. C. (1998). Uma introdução à análise exploratória de dados multivariados. Química Nova, 21(4), 467–469. https://doi.org/10.1590/S0100-40421998000400016 DOI: https://doi.org/10.1590/S0100-40421998000400016

Mucharam, I., Rustiadi, E., Fauzi, A., & Harianto. (2019). Development of sustainable agricultural indicators at provincial levels in Indonesia: A Case study of rice. IOP Conference Series: Earth and Environmental Science, 399(1), 012054. https://doi.org/10.1088/1755-1315/399/1/012054 DOI: https://doi.org/10.1088/1755-1315/399/1/012054

Nazari, Z., & Kang, D. (2018). A New Hierarchical Clustering Algorithm with Intersection Points. 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), 1–5. https://doi.org/10.1109/UPCON.2018.8596795 DOI: https://doi.org/10.1109/UPCON.2018.8596795

Nesse, L. L., & Larsen, H. J. (2009). Lymphocyte antigens in Norwegian goats: serological and genetic studies. Animal Genetics, 18(3), 261–268. https://doi.org/10.1111/j.1365-2052.1987.tb00767.x DOI: https://doi.org/10.1111/j.1365-2052.1987.tb00767.x

Peeters, J. P., & Martinelli, J. A. (1989). Hierarchical cluster analysis as a tool to manage variation in germplasm collections. Theoretical and Applied Genetics, 78(1), 42–48. https://doi.org/10.1007/BF00299751 DOI: https://doi.org/10.1007/BF00299751

Reis, J. S. da M., Cardoso, R. P., Silva, D. E. W., Almeida, M. da G. D. de, Barros, J. G. M. de, Sampaio, N. A. de S., & Barbosa, L. C. F. M. (2023). The Titans Sustainability and Industry 4.0 Working for The Planet Earth. Revista de Gestão e Secretariado, 14(2), 1953–1965. DOI: https://doi.org/10.7769/gesec.v14i2.1674

Reis, J. S. da M., Espuny, M., Cardoso, R. P., Sampaio, N. A. de S., Barros, J. G. M. De, Barbosa, L. C. F. M., & Oliveira, O. J. De. (2022). Mapping Sustainability 4.0: contributions and limits of the symbiosis. Revista de Gestão e Secretariado, 13(3), 1426–1438. https://doi.org/10.7769/gesec.v13i3.1417 DOI: https://doi.org/10.7769/gesec.v13i3.1417

Sabin, J. G., Ferrão, M. F., & Furtado, J. C. (2004). Análise multivariada aplicada na identificação de fármacos antidepressivos. Parte II: Análise por componentes principais (PCA) e o método de classificação SIMCA. Revista Brasileira de Ciências Farmacêuticas, 40(3), 387–396. https://doi.org/10.1590/S1516-93322004000300015 DOI: https://doi.org/10.1590/S1516-93322004000300015

Santos, L. T. S. de O., & Jesus, T. B. de. (2014). Caracterização de metais pesados das águas superficiais da bacia do Rio Subaé (Bahia). Geochimica Brasiliensis, 28(2), 137–148. https://doi.org/10.5327/Z0102-9800201400020003 DOI: https://doi.org/10.5327/Z0102-9800201400020003

Semagn, K., Bjornstad, A., Stedje, B., & Bekele, E. (2000). Comparison of multivariate methods for the analysis of genetic resources and adaptation in Phytolacca dodecandra using RAPD. Theoretical and Applied Genetics, 101(7), 1145–1154. https://doi.org/10.1007/s001220051591 DOI: https://doi.org/10.1007/s001220051591

Simanová, Ľ., & Gejdoš, P. (2015). The Use of Statistical Quality Control Tools to Quality Improving in the Furniture Business. Procedia Economics and Finance, 34(15), 276–283. https://doi.org/10.1016/S2212-5671(15)01630-5 DOI: https://doi.org/10.1016/S2212-5671(15)01630-5

Yasin, H. (2017). Towards Efficient 3D Pose Retrieval and Reconstruction from 2D Landmarks. 2017 IEEE International Symposium on Multimedia (ISM), 2017-Janua, 169–176. https://doi.org/10.1109/ISM.2017.31 DOI: https://doi.org/10.1109/ISM.2017.31

Downloads

Publicado

2023-05-10

Como Citar

Fonseca, D., Correa, M. P. de O., Santos, R. R., Cardoso, R. P., Reis, J. S. da M., & Sampaio, N. A. de S. (2023). Effect of pollution on physical and chemical water data: a multivariate statistical analysis. Revista De Gestão E Secretariado, 14(5), 7353–7366. https://doi.org/10.7769/gesec.v14i5.2125